Issue 3, 2020

Towards one-step design of tailored enzymatic nanobiosensors

Abstract

The manufacturing of conventional enzymatic biosensors produced via a layer-by-layer (LbL) approach requires expensive instrumentation, and in most cases involves a complex, resource and time-consuming fabrication process. Moreover, LbL assemblies are prone to mechanical instability that leads to irreversible changes in sensor architecture and morphology resulting in degradation of enzymatic activities and insufficient signal reproducibility. Hence, novel fabrication techniques for the production of enzymatic biosensors that are instrumentally controlled and allow reproducible, simultaneous multi-analyte detection with high specificity, temporal and spatial resolution are greatly required. Herein, we report on the development of a novel, fully instrumentally controlled, one-step synthesis approach for the production of nanoparticle-based enzymatic biosensors. The approach relies on a simultaneous encapsulation of the enzyme (glucose and alcohol oxidases), a fluoropolymer (Nafion) and noble metal nanoparticles via co-deposition from a phosphate multiple electrolyte on top of the sensor surface. Remarkably, electrochemical studies revealed that nanoparticle-based biosensors produced by this novel fabrication approach display a significantly enhanced mechanical stability (more than several orders of magnitude higher) without loss of biological activity or leakage of the enzyme or Nafion, and advanced synthesis reproducibility (40 times higher) in comparison to LbL analogues.

Graphical abstract: Towards one-step design of tailored enzymatic nanobiosensors

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2019
Accepted
03 Dec 2019
First published
03 Dec 2019

Analyst, 2020,145, 1014-1024

Towards one-step design of tailored enzymatic nanobiosensors

D. Semenova, K. V. Gernaey, B. Morgan and Y. E. Silina, Analyst, 2020, 145, 1014 DOI: 10.1039/C9AN01745C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements