Issue 7, 2020

Optimization of confined direct analysis in real time mass spectrometry (DART-MS)

Abstract

Direct analysis in real time mass spectrometry (DART-MS) is seeing increased use in many fields, including forensic science, environmental monitoring, food safety, and healthcare. With increased use, novel configurations of the system have been created to either aid in detection of traditionally difficult compounds or surfaces, provide a more reproducible analysis, and/or chemically image surfaces. This work focuses on increasing the fundamental understanding of one configuration, where the DART ionization gas is confined in a junction, such as with thermal desorption (TD) DART-MS. Using five representative compounds and a suite of visualization tools, the role of the DART ionization gas, Vapur flow rate, gas back pressure, and exit grid voltage were examined to better understand both the chemical and physical processes occurring inside the confined configuration. The use of nitrogen as a DART ionization gas was found to be more beneficial than helium because of enhanced mixing with the analyte vapors, providing a more reproducible response. Lower Vapur flow rates were also found to be advantageous as they increased the analyte residence time in the junction, thus increasing the probability of its ionization. Operation at even lower Vapur flow rates was achieved by modifying the junction to restrict the DART gas flow. The DART exit grid voltage and gas back pressure had little observed impact on analyte response. These results provide the foundation to better understand and identify best practices for using a confined DART-MS configuration.

Graphical abstract: Optimization of confined direct analysis in real time mass spectrometry (DART-MS)

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2020
Accepted
14 Feb 2020
First published
17 Feb 2020

Analyst, 2020,145, 2743-2750

Optimization of confined direct analysis in real time mass spectrometry (DART-MS)

E. Sisco, M. E. Staymates and T. P. Forbes, Analyst, 2020, 145, 2743 DOI: 10.1039/D0AN00031K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements