Broadband terahertz signatures and vibrations of dopamine†
Abstract
Dopamine (DA) is an essential neurotransmitter and hormone of the nervous system, its structural and conformational properties play critical roles in biological functions and signal transmission processes. Although this neuroactive molecule has been studied extensively, the low-frequency vibration features that are closely related to the conformation and molecular interactions in the terahertz (THz) band still remain unclear. In this study, a broadband THz time-domain spectroscopy (THz-TDS) system in the frequency band of 0.5–18 THz was used to characterize the unique THz fingerprint of DA. In addition, density functional theory (DFT) calculations were performed to analyze the vibrational properties of DA. The results suggest that each THz resonant absorption peak of DA corresponds to specific vibrational modes, and the collective vibration also exists in the broadband THz range. Moreover, the interactions between the DA ligand and the D2 and D3 receptors were investigated by docking, and the simulated THz spectra were obtained. The results indicate the dominant role of hydrogen bonding interactions and the specificity of molecular conformation. This work may help to understand the resonance coupling between THz electromagnetic waves and neurotransmitters.