A photoelectrochemical aptasensor for sensitively monitoring chloramphenicol using plasmon-driven AgNP/BiOCl composites†
Abstract
A photoelectrochemical (PEC) aptasensor based on silver nanoparticle/BiOCl (AgNP/BiOCl) composites was constructed for detecting chloramphenicol (CAP). The surface-plasmon resonance (SPR) effect of AgNPs can focus the incident light and promote the migration and separation of the photogenerated carriers of AgNP/BiOCl composites. As a result, the AgNP/BiOCl composites showed an enhanced PEC performance compared to that of pure BiOCl. A PEC CAP aptasensor was fabricated using AgNP/BiOCl composites as photoactive materials and a CAP aptamer as a recognition element. The PEC aptasensor exhibited a broad linear response range (0.2 pM–10 nM), a low limit of determination (0.08 pM), satisfactory selectivity, stability, and reproducibility to meet the practical analysis requirements. This work demonstrates that the PEC CAP aptasensor has a promising prospect in environmental assays.