Issue 24, 2020

Cu2+-Regulated reversible coordination interaction of GQD@Tb/GMP ICP nanoparticles: towards directly monitoring cerebrospinal acetylcholinesterase as a biomarker for cholinic brain dysfunction

Abstract

This work demonstrates a new strategy for sensing cerebrospinal acetylcholinesterase (AChE) as a cholinergic biomarker for brain dysfunction based on graphene quantum dot (GQD)-functionalized lanthanide infinite coordination polymer (Ln-ICP) nanoparticles. The ICPs used in this work were comprised of two components, i.e. a supramolecular Ln-ICP host formed by the coordination between the GMP ligand and central metal ion Tb3+, and guest GQDs with abundant functional groups, which were utilized as antenna ligands to further sensitize the fluorescence of Tb/GMP. Upon excitation at 300 nm, the obtained GQD@Tb/GMP ICP nanoparticles exhibited enhanced green fluorescence from Tb/GMP. With the addition of Cu2+, the competitive coordination between Cu2+ and GQDs weakened the antenna effect, leading to a decrease in the fluorescence of GQD@Tb/GMP ICPs. However, in the presence of thiocholine (TCh), a thiol-containing compound hydrolyzed from acetylthiocholine (ATCh) by AChE, a stronger coordination interaction between Cu2+ and TCh occurred, resulting in the restoration of the fluorescence of GQD@Tb/GMP ICPs. Using the method established herein, the cerebrospinal AChE fluctuation of rats with acute organophosphorus pesticide (OP) poisoning or chronic Alzheimer's disease (AD) could be monitored. This study essentially provides a novel approach to realize the direct monitoring of a biomarker for brain dysfunction by regulating the competitive coordination interaction reversibly, which is critical in the early diagnosis and therapy of brain diseases.

Graphical abstract: Cu2+-Regulated reversible coordination interaction of GQD@Tb/GMP ICP nanoparticles: towards directly monitoring cerebrospinal acetylcholinesterase as a biomarker for cholinic brain dysfunction

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2020
Accepted
25 Sep 2020
First published
28 Sep 2020

Analyst, 2020,145, 7849-7857

Cu2+-Regulated reversible coordination interaction of GQD@Tb/GMP ICP nanoparticles: towards directly monitoring cerebrospinal acetylcholinesterase as a biomarker for cholinic brain dysfunction

C. Liu, C. Huang, R. Ma, W. Zhai, J. Deng and T. Zhou, Analyst, 2020, 145, 7849 DOI: 10.1039/D0AN01440K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements