Finding specific peaks (markers) using fuzzy divisive hierarchical associative-clustering based on the chromatographic profiles of medicinal plant extracts obtained at various detection wavelengths†
Abstract
Advanced chemometric methods, such as fuzzy c-means (FCM), a fuzzy divisive hierarchical clustering algorithm (FDHC), and fuzzy divisive hierarchical associative-clustering (FDHAC), which offer the excellent possibility to associate each fuzzy partition of samples with a fuzzy set of characteristics (features), have been successfully applied in this study. FDHAC, a method that utilizes specific regions of chromatographic fingerprints or specific peaks as a fuzzy set of characteristics, was effectively applied to the characterization and classification of medicinal plant extracts according to their antioxidant capacities, using their chromatographic profiles monitored at 242, 260, 280, 320, 340, and 380 nm via HPLC with a multistep isocratic and gradient elution system and diode array detection (HPLC-DAD). What is quite new is the partitioning of the chromatographic retention time ranges and peaks (markers) and their association with different plant extract samples with high, moderate or low antioxidant capacity. Furthermore, the degrees of membership of fingerprints (fuzzy markers) are highly relevant with respect to the (dis)similarity of samples because they indicate both the positions and degrees of association of chromatographic peaks from different classes or individual samples. The obtained results clearly demonstrate the efficiency and information power of these advanced fuzzy methods for medicinal plant characterization and authentication, and this study generates the premise for a new chemometrics approach with high-impact for use in analytical chemistry and other fields.