Issue 17, 2020

Size effect of human epidermal growth factor-conjugated polystyrene particles on cell proliferation

Abstract

Conjugation of growth factors to a carrier is a favorable method to improve their efficacy as therapeutic molecules. Here, we report the carrier size effect on bioactivity of human epidermal growth factor (hEGF) conjugated to polystyrene particles. BALB/3T3 cells were treated with hEGF-conjugated particles (hEGF-conjs) sized from 20 to 1000 nm. At hEGF concentrations less than 0.5 ng ml−1, free hEGF was more potent than the hEGF-conjs at inducing cell proliferation. However, cell proliferation was size-dependent at higher concentrations of hEGF i.e. hEGF-conjs sized equal to or less than 200 nm displayed lower cell proliferation, compared to free hEGF, but larger particles showed increased cell proliferation. This is in agreement with previous studies showing accumulation of activated-EGFRs in early endosomes triggers apoptosis of A431 and HeLa cells. The confocal microscopy and co-localization fluorescence staining showed the 500 and 1000 nm hEGF-conjs exclusively remained on the cell surface, probably enabling them to activate EGF receptors for a longer time. Conversely, smaller particles were mostly inside the cells, indicating their rapid endocytosis. Similarly, A431 cells treated with 20 nm hEGF-conj, endocytosed the particles and experienced decreased cell proliferation, while the 500 and 1000 nm hEGF-conjs were not internalized, and induced partial cell proliferation. Moreover, we showed multivalency of hEGF-conjs is not the cause of enhanced cell proliferation by large particles, as the degree of EGFR phosphorylation by free EGF was higher, compared to hEGF-conjs. Our results suggest the potential of micron-sized particles as a carrier for hEGF to enhance cell proliferation, which could be explored as a promising approach for topical application of growth factors for accelerating wound healing.

Graphical abstract: Size effect of human epidermal growth factor-conjugated polystyrene particles on cell proliferation

Article information

Article type
Paper
Submitted
04 Feb 2020
Accepted
15 Jul 2020
First published
06 Aug 2020

Biomater. Sci., 2020,8, 4832-4840

Size effect of human epidermal growth factor-conjugated polystyrene particles on cell proliferation

S. Yasami-Khiabani, A. Karkhaneh, M. A. Shokrgozar, A. Amanzadeh and M. Golkar, Biomater. Sci., 2020, 8, 4832 DOI: 10.1039/D0BM00183J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements