Issue 21, 2020

“Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems

Abstract

Combination of various polymeric blocks with distinct characteristics such as thermo-responsiveness, non-ionic nature and zwitterionic properties is an interesting approach toward fabricating copolymers undergoing a smart self-assembly process in an aqueous environment. In some cases, through a so-called “schizophrenic” self-assembly process, stimuli-induced self-assembly can occur from either double-hydrophilic or double hydrophobic polymers. In this process, the roles of the blocks forming the hydrophobic core and hydrophilic shell can be switched by changing the external conditions. This transformation in the solubilization profile leads to the fabrication of “smart” polymeric vehicles which could potentially control the release of their cargos as well as differentiate between encapsulated agents based on their charge and polarity properties. The aforementioned changes of the amphiphilicity of polymers in “schizophrenic” structures offer numerous self-assembly scenarios. In the current review, we summarize the polymer and peptide-based schizophrenic copolymers which could form micellar and vesicular (polymersome) systems providing novel structures with beneficial applications.

Graphical abstract: “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems

Article information

Article type
Review Article
Submitted
01 Aug 2020
Accepted
03 Sep 2020
First published
02 Oct 2020

Biomater. Sci., 2020,8, 5787-5803

“Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems

M. Shahriari, V. P. Torchilin, S. M. Taghdisi, K. Abnous, M. Ramezani and M. Alibolandi, Biomater. Sci., 2020, 8, 5787 DOI: 10.1039/D0BM01283A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements