A photothermally-induced HClO-releasing nanoplatform for imaging-guided tumor ablation and bacterial prevention†
Abstract
Photothermal therapy (PTT) is a cure that can inhibit tumor growth effectively and even remove tumor via photo-induced local hyperthermia. However, its shortcoming lies in the fact that excessive heat is most likely to lead to thermal injury at the epidermis of the tumor region and even the area of the surrounding tissue. As a consequence, the exposure of the thermally-induced wound would result in the increased risk of bacterial infection. To date, few PTT platforms have attached importance to the prevention of bacterial infection at the photothermally-induced wound. Herein, we reported a thermally-sensitive liposome nanosystem (Lipo-B-TCCA) containing aza-BODIPY and trichloroisocyanuric acid, which is conductive for the PTT of tumor and the prevention of bacteria. It is observed that the designed nanoplatform could exhibit remarkable stability, high photothermal conversion efficiency (31.4%), and efficient HClO-releasing ability in vitro and in vivo. Moreover, Lipo-B-TCCA is able to eliminate tumor efficiently via near infrared fluorescence and photothermal imaging guidance with low side effects. Most importantly, Lipo-B-TCCA could prevent the growth of S. aureus in the thermal wound during the process of PTT. The imaging-guided photothermally-induced HClO-releasing PTT nanoplatform for tumor ablation and bacterial prevention shows excellent performance and great potential for biomedical applications.