High mechanical strength and broad optical absorption in underexplored group IV nitride chalcogenides†
Abstract
While lab-scale synthesis of trigonal-Zr2N2S, hexagonal-Zr2N2S and hexagonal-Zr2N2Se has been reported, meaningful data on the photophysical properties of IV-nitride chalcogenides in general are scarcely available. The first-principles calculations and genetic algorithm modeling in our work reveal the existence of remarkably stable, indirect gap trigonal-Zr2N2Se and trigonal-Hf2N2Se phases, which progress to direct gap, monoclinic materials in monolayer form. These structures display the desired optoelectronic properties, such as exceptionally high visible-UV absorption spectra (105–106 cm−1) and exciton binding energy below 0.02 eV. Strong hybridization between the Zr-d, N-p and Se-p orbitals is accounted for by the polysilicon comparable Vickers hardness (10.64–12.77 GPa), while retaining ductile nature.