Issue 4, 2020

Crystallization and biocompatibility enhancement of 3D-printed poly(l-lactide) vascular stents with long chain branching structures

Abstract

A series of adjustable long chain branching poly(L-lactide)s (b-PLAs) was prepared by reactive processing of linear PLA using pyromellitic dianhydride (PMDA) and polyfunctional epoxy ether (PFE) as the branching agent and their vascular stents were fabricated via 3D-printing. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) results indicated that the chain branching reaction occurs and the average molecular weight increases obviously after the chain branching reaction. Rheological tests on the b-PLAs demonstrated that they are composed of a symmetric- or asymmetric-star, or tree-like chain configuration. The volume fraction of the branching structure of the chains increased from 0.03 to 0.3 with increasing branching agent content. The effects of the branching structure on the melt crystallization behavior of b-PLAs were investigated by means of differential scanning calorimetry (DSC). The isothermal crystallization results showed that the half-time of crystallization (t1/2) of the samples decreased from 16.8 min for linear PLA to 2.3 min when the branching agent content was 2 wt% at 106 °C. Also, as observed from polarized optical microscopy experiments, the nucleation density of the b-PLAs significantly increased with increasing volume fraction of the branching structure because the enrichment of segments around the branching structure facilitated nucleation, thus the b-PLA samples have a higher probability to form a primary nucleus than linear PLA. Moreover, mechanical testing demonstrated that forming the branching structure enabled the effective modification of the mechanical properties of PLA. The microstructures with a smaller spherulite size and higher crystallinity of the b-PLAs improved their tensile strength and modulus from 45.7 MPa and 1.63 GPa to 77.2 MPa and 3.41 GPa, respectively. Furthermore, the radial force performance of the 3D printed b-PLA vascular stents was enhanced from 4.8 to 13.7 N by the branching structure of the chains. The CCK-8 assay results indicated that the osteoblast activity of b-PLA is higher than that of linear PLA, and the scanning electron microscopy (SEM) results also indicated that b-PLA was covered and flattened with a better attachment morphology for the osteoblasts than PLA. Therefore, the b-PLAs with a long chain branching structure could effectively facilitate cell growth, proliferation, and differentiation.

Graphical abstract: Crystallization and biocompatibility enhancement of 3D-printed poly(l-lactide) vascular stents with long chain branching structures

Supplementary files

Article information

Article type
Paper
Submitted
15 Oct 2019
Accepted
01 Dec 2019
First published
02 Dec 2019

CrystEngComm, 2020,22, 728-739

Crystallization and biocompatibility enhancement of 3D-printed poly(L-lactide) vascular stents with long chain branching structures

L. Jiafeng, Z. Qin, F. Tiantang, G. Li, Y. Wuyou, F. Zhongyong, C. Lu and L. Qing, CrystEngComm, 2020, 22, 728 DOI: 10.1039/C9CE01477B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements