Issue 1, 2020

Induced crystallographic changes in Cd1−xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≤ 0.5

Abstract

High-resolution X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques were used to investigate, as a function of the nominal Zn content in the range of 0–50%, the out-of-plane and in-plane crystallographic characteristics of Cd1−xZnxO films grown on r-plane sapphire substrates via atmospheric pressure metal–organic chemical vapor deposition. The study is conducted to search for knowledge relating to the structural details during the transition process from a rock-salt to a wurtzite structure as the Zn content increases in this CdO–ZnO system. It has been found that it is possible to obtain films exhibiting a single (001) cubic orientation with good crystalline quality up to a Zn content of about 10%. For zinc content values higher than 15%, the films become polycrystalline, with two main domains inclined with respect to the plane perpendicular to the surface that contains the c-axis of sapphire. The domains have a tilt that tends asymptotically to ±15° with the Zn content, and the cubic cell presents strong orthorhombic distortion. These two crystallographic domains (orientations) cannot be observed via conventional XRD measurements and are supposed to form part of an intermediate orthorhombic phase in the transition from a rock-salt structure towards a wurtzite structure, which finally appears at higher Zn content values.

Graphical abstract: Induced crystallographic changes in Cd1−xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≤ 0.5

Article information

Article type
Paper
Submitted
20 Sep 2019
Accepted
11 Nov 2019
First published
12 Nov 2019

CrystEngComm, 2020,22, 74-84

Induced crystallographic changes in Cd1−xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≤ 0.5

M. D. C. Martínez-Tomás, A. Huerta-Barberà, S. Agouram and V. Muñoz-Sanjosé, CrystEngComm, 2020, 22, 74 DOI: 10.1039/C9CE01483G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements