Issue 5, 2020

Manipulating clusters by regulating N,O chelating ligands: structures and multistep assembly mechanisms

Abstract

We obtained a binuclear Gd(III) complex [Gd2(L1)2(NO3)4] (1, HL1 = (E)-2-(2-(pyridin-2-ylmethyleneamino)ethoxy)ethanol) by reacting N2O2-tetradentate chelating ligand HL1 with Gd(NO3)3·6H2O at solvothermal temperature of 100 °C. Time-dependent high-resolution electrospray ionization mass spectrometry (HRESI-MS) followed the formation of 1 and revealed it's the assembly mechanism: HL1 → Gd(L1) → Gd2(L1)2. When we used the NO2-tridentate chelating ligand HL2 (HL2 = 2-(2-aminoethoxy)ethanol) under the same reaction conditions, we obtained an “hourglass-like” nonanuclear Gd(III) cluster [Gd9(L2)83-OH)84-O)2(NO3)8]·2CH3OH·H2O (2). Their assembly mechanism was proposed: HL2 → Gd(L2) → Gd2(L2)2 → Gd3(L2)3 → Gd4(L2)4 → Gd5(L2)4 → Gd9(L2)8. Most notably, when we used the NO-bidentate chelate ligand HL3 (HL3 = picolinic acid), we obtained a dodecanuclear Gd(III) cluster [Gd12(L3)8(OH)16(NO3)8(OH)4(H2O)4]·22CH3OH·25CH3CN (3) under the same reaction conditions. We found that the formation process of cluster 3 involved two different and mutually interfering self-assembly processes, namely, multitemplate-induced assembly (HL3 → Gd(L3) → Gd2(L3)2 → Gd12(L3)8) and stepwise assembly (HL3 → Gd(L3) → Gd2(L3)2 → Gd3(L3)2 → Gd4(L3)2 → Gd5(L3)2 → Gd6(L3)2 → Gd12(L3)8).

Graphical abstract: Manipulating clusters by regulating N,O chelating ligands: structures and multistep assembly mechanisms

Supplementary files

Article information

Article type
Paper
Submitted
01 Nov 2019
Accepted
23 Dec 2019
First published
02 Jan 2020

CrystEngComm, 2020,22, 915-923

Manipulating clusters by regulating N,O chelating ligands: structures and multistep assembly mechanisms

H. Wang, Z. Liu, Z. Zhu, J. Peng, X. Ma, J. Bai, H. Zou, K. Mo and F. Liang, CrystEngComm, 2020, 22, 915 DOI: 10.1039/C9CE01730E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements