Time for quartet: the stable 3 : 1 cocrystal formulation of FTDO and BTF – a high-energy-density material†
Abstract
A computer simulation of cocrystal structures of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine-4,6-dioxide (FTDO) with benzotrifuroxan (BTF) in ratios of (1 : 1), (2 : 1) and (3 : 1) was performed, and their thermodynamic stability and physical–chemical characteristics were calculated. According to calculations, the (3 : 1) cocrystal is thermodynamically most stable. Therefore, it is the most preferable for cocrystallization, and we successfully obtained a cocrystal only for the (3 : 1) ratio. The cocrystal was characterized by X-ray diffraction and vibrational spectroscopy. In the vibrational spectra, some new bands were observed compared with the parent compounds spectra. In addition, some bands of pure FTDO and BTF disappeared, which is typical for a molecular complex formation. The thermal decomposition and sensitivity to impact and friction of the cocrystal were investigated. The impact sensitivity (2.8 J) turned out to be equal to the sensitivity of the less sensitive component (BTF). In addition, the sensitivity to friction (14 N) decreased by three times compared with the highly sensitive FTDO, which is unusual for cocrystals of high-energy compounds. The (3 : 1) cocrystal had a high density of 1.888 (calc.) and 1.865 g cm−3 (exp.). The calculated detonation velocity (9.14 km s−1) and Chapman–Jouguet pressure (38.08 GPa) are high, and indicate favorable prospects for using this cocrystal.