Issue 26, 2020

CoCr2O4 nanospheres for low temperature methane oxidation

Abstract

Spinel CoCr2O4 nanostructured catalysts were prepared by a facile solvothermal method using benzyl alcohol as both a structure-directing agent and a reagent. The growth mechanism of the CoCr2O4 nanospheres was studied by Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD). The influence of solvothermal reaction time on the morphology, structure, and oxidation states of the products was investigated through scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). It was found that early in the reaction, the CoCr2O4 spheres are coated with parasitic Co3O4 nanoparticles that disappear after long reaction times to yield smooth CoCr2O4 particles. The catalytic performance of the noble metal-free nanospheres was optimized for oxidation of methane to CO2 as evaluated at a high space velocity of 180 000 mL g−1 h−1, reaching 100% conversion below 500 °C. Importantly, samples prepared with 8 h solvothermal treatment exhibit excellent stability, maintaining 80% conversion in the presence of 10% H2O and 5 ppm SO2 after 10 cycles (∼170 h). The high stability gives these nanomaterials valuable potential for application in natural gas vehicles.

Graphical abstract: CoCr2O4 nanospheres for low temperature methane oxidation

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2020
Accepted
09 Jun 2020
First published
17 Jun 2020

CrystEngComm, 2020,22, 4404-4415

CoCr2O4 nanospheres for low temperature methane oxidation

Y. Dai, H. Wang, S. Liu, K. J. Smith, M. O. Wolf and M. J. MacLachlan, CrystEngComm, 2020, 22, 4404 DOI: 10.1039/D0CE00698J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements