Nanosheet-assembled microflower-like coordination polymers by surfactant-assisted assembly with enhanced catalytic activity†
Abstract
Tuning the morphology and size of coordination polymers (CPs) is an effective strategy to enable crystalline materials for desired applications. Herein, two CPs, named [Cd2(DBTP)(H2O)2]n (1) and {[Zn2(DBTP)(H2O)]·2.5H2O}n (2), were prepared by employing a rigid V-shaped and multidentate N-heterocyclic ligand 2,6-di(1H,2′H-[3,3′-bi(1,2,4-triazol)]-5′-yl)pyridine (H4DBTP) under solvothermal conditions. Their crystal morphologies and sizes were controlled by varying the type and the amount of surfactants. The morphology can be changed from bulk blocks to microflower-like hierarchical spheres assembled by nanosheets and the mean size of the microflowers is approximately 2 μm. Nanoscale 1a and 2a were further evaluated as heterogeneous catalysts for the conversion reactions of nitromethylbenzenes into benzoic acids. The results showed that nanoscale 2a is a more efficient catalyst than nanoscale 1a and their corresponding bulk counterparts.