Issue 4, 2020

Revisiting the Stokes–Einstein relation for glass-forming melts

Abstract

Molecular dynamics simulations of Ni36Zr64, Cu65Zr35 and Ni80Al20 were carried out over a broad range of temperature (900–3000 K) to investigate the Stokes–Einstein (SE) relation for glass-forming melts. Our results reproduce experimental structural and transport properties. Results show that the breakdown temperature of the SE relation (TSE) equals the dynamical crossover temperature (TA) and both are roughly twice the glass-transition temperature (Tg) for the three glass-forming melts (TSE = TA ≈ 2.0Tg). The product of the individual component self-diffusion coefficient and viscosity Dαη can be roughly regarded as a constant at the transition zone (a small temperature range around TSE) in which the temperature behaviors of self-diffusion coefficient and viscosity switch from high-temperature Arrhenius to a low-temperature VFT behavior. Below TSE, the decoupling of component diffusion coefficients was found. In particular, the decoupling of component diffusion coefficients can be ascribed to the decoupling of the partial pair structural correlation of components, which can be clearly reflected by the intersection of the high-temperature and low-temperature behaviors of the ratio between the partial pair correlation entropy of components (Sβ2/Sα2). Furthermore, the ratio between the partial pair correlation entropy of components may be used to predict the validity of the SE relation, in the absence of both transport coefficients and atomic coordinates.

Graphical abstract: Revisiting the Stokes–Einstein relation for glass-forming melts

Article information

Article type
Paper
Submitted
08 Sep 2019
Accepted
23 Dec 2019
First published
24 Dec 2019

Phys. Chem. Chem. Phys., 2020,22, 2557-2565

Revisiting the Stokes–Einstein relation for glass-forming melts

Q. Cao, P. Wang and D. Huang, Phys. Chem. Chem. Phys., 2020, 22, 2557 DOI: 10.1039/C9CP04984C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements