Issue 2, 2020

Boron based layered electrode materials for metal-ion batteries

Abstract

Graphite is the most commonly used electrode material, which is mainly due to two key advantages, i.e., its layered structure acts a perfect framework for the accommodation and migration of ions, and the light atomic mass of carbon is conducive to obtaining a high specific capacity. As a neighbor of carbon in the periodic table, boron is even lighter than carbon, and it can also form various layered structures. Here, we systematically investigate boron-based layered compounds to explore their potential applications as electrode materials by means of first-principle calculations. Among various types of boron compounds, MXB4 (M = Li, Na, Mg; X = Al, Ga) with the YCrB4-type structure are found to be potentially excellent electrode materials for metal-ion batteries. The adsorption and migration of Li/Na/Mg in MXB4 have been presented, and migration barriers comparable with conventional electrode materials are observed. In particular, Li2AlB4 and Li2GaB4 are found to exhibit quite high specific capacities of 754 mA h g−1 and 470 mA h g−1 compared to the theoretical value of graphite (372 mA h g−1) as well as low average voltages of 0.71 V and 0.79 V, respectively, revealing that they may be good anode materials for Lithium ion batteries.

Graphical abstract: Boron based layered electrode materials for metal-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2019
Accepted
02 Dec 2019
First published
02 Dec 2019

Phys. Chem. Chem. Phys., 2020,22, 709-715

Boron based layered electrode materials for metal-ion batteries

K. Hao, Q. Yan and G. Su, Phys. Chem. Chem. Phys., 2020, 22, 709 DOI: 10.1039/C9CP05318B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements