Issue 4, 2020

Simulation of Raman and Raman optical activity of saccharides in solution

Abstract

Structural studies of sugars in solution are challenging for most of the traditional analytical techniques. Raman and Raman optical activity (ROA) spectroscopies were found to be extremely convenient for this purpose. However, Raman and ROA spectra of saccharides are challenging to interpret and model due to saccharides' flexibility and polarity. In this study, we present an optimized computational protocol that enables the simulation of the spectra efficiently. Our protocol, which results in good agreement with experiments, combines molecular dynamics and density functional theory calculations. It further uses a smart optimization procedure and a novel adaptable scaling function. The numerical stability and accuracy of individual computational steps are evaluated by comparing simulated and experimental spectra of D-glucose, D-glucuronic acid, N-acetyl-D-glucosamine, methyl β-D-glucopyranoside, methyl β-D-glucuronide, and methyl β-N-acetyl-D-glucosaminide. Overall, our Raman and ROA simulation protocol allows one to routinely and reliably calculate the spectra of small saccharides and opens the door to advanced applications, such as complete 3-dimensional structural determination by direct interpretation of the experimental spectra.

Graphical abstract: Simulation of Raman and Raman optical activity of saccharides in solution

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2019
Accepted
11 Dec 2019
First published
13 Jan 2020
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2020,22, 1983-1993

Simulation of Raman and Raman optical activity of saccharides in solution

V. Palivec, V. Kopecký, P. Jungwirth, P. Bouř, J. Kaminský and H. Martinez-Seara, Phys. Chem. Chem. Phys., 2020, 22, 1983 DOI: 10.1039/C9CP05682C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements