Issue 8, 2020

Shapes of epitaxial gold nanocrystals on SrTiO3 substrates

Abstract

Morphological control of gold nanocrystals is important as their catalytic and optical properties are highly shape dependent. In this paper we report the shapes of gold nanocrystals which deviate from the equilibrium Wulff shape due to the influence of the SrTiO3 single crystal substrates. The gold crystals are characterized by scanning tunneling microscopy (STM) and scanning electron microscopy (SEM). The nanocrystals have an equilibrium shape of a truncated octahedron with {111} and {001} facets. On all three substrate surfaces, i.e., SrTiO3(001)-(2 × 1), SrTiO3(001)-c(4 × 2), and SrTiO3(111)-(4 × 4) + (6 × 6), the height-to-width ratio of the gold crystals is not a constant as would be expected for equilibrium crystals, but instead it increases with crystal height. We propose that as the crystals increase in size, their aspect ratio heightens to relax the interfacial strain. The ratio between the {111} and {001} surface areas of our gold crystals is found to differ on the three substrates, which we speculate is due to the selective adsorption of surfactants on the {111} and {001} gold facets resulting from the different substrate surfaces. Reentrant facets of gold crystals that should be present according to their Wulff shape are not observed because these concave sites typically grow out due to kinetic considerations. This study demonstrates the significant effect of the crystal facet termination and surface reconstruction of an oxide substrate on the shape of supported gold nanocrystals.

Graphical abstract: Shapes of epitaxial gold nanocrystals on SrTiO3 substrates

Article information

Article type
Paper
Submitted
17 Dec 2019
Accepted
05 Feb 2020
First published
05 Feb 2020

Phys. Chem. Chem. Phys., 2020,22, 4416-4428

Shapes of epitaxial gold nanocrystals on SrTiO3 substrates

P. Chen, K. Murugappan and M. R. Castell, Phys. Chem. Chem. Phys., 2020, 22, 4416 DOI: 10.1039/C9CP06801E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements