Transforming micelles into mixed micelles: a promising approach to tune the catalytic performance of imidazolium-based surface active ionic liquids toward degradation of rhodamine B
Abstract
Herein, we demonstrate that the catalytic performance of imidazolium-based surface-active ionic liquid (SAIL) micelles can be significantly enhanced through the addition of an appropriate type and amount of intelligently conceived amphiphile to form mixed micelles. Specifically, we show that the catalytic performance of 1-dodecyl-3-methyl imidazolium chloride (DDMIMCl) micelles toward the reductive degradation of rhodamine B (RhB), a carcinogenic dye extensively used in multiple industrial applications, can be appreciably boosted through addition of Brij56, a nonionic surfactant. Detailed kinetic investigations on the catalytic performance of pre- and post-micellar concentrations of DDMIMCl and its mixed micelles with Brij56 over various mole fractions, toward the reductive degradation of RhB, are presented. The data analyzed in light of Berezin's kinetic model suggest that the addition of Brij56 to DDMIMCl micelles significantly enhances their catalytic performance. The catalytic activity exhibited by the DDMIMCl–Brij56 (XBrij56 = 0.2) mixed micellar system is better than that reported for many state-of-the-art nanoparticle/homogenous catalysts. The results explained in light of Berezin's kinetic model are well supported by physico-chemical studies like conductometry, fluorimetry and dynamic light scattering. The presented results anticipate stimulation of extensive research activity for exploiting the mixed micellization approach as a novel avenue for modulating the catalytic performance of SAILs.