2D PC3 as a promising thermoelectric material†
Abstract
In the present article, we report the thermoelectric properties of monolayer PC3 for the first time. The structural, vibrational, electronic and thermoelectric properties of PC3 are investigated in detail using a combination of density functional and Boltzman transport theory, and are compared to the carbon (graphene) and phosphorous (phosphorene) analogues. The results show that the PC3 monolayer is dynamically stable and robust upon oxygen contact as well. Also, PC3 is found to be an indirect band gap semiconductor in comparison to the zero gap carbon (graphene) and direct gap phosphorous (phosphorene) analogues. The effect of axial strains is also investigated on the electronic and thermoelectric properties of PC3. The present work reveals monolayer PC3 to be an excellent thermoelectric material with significant thermoelectric performance (ZT ∼ 1) for a large scale operating temperature range of 200–1200 K.