Issue 25, 2020

Stabilizing the crystal structures of NaFePO4 with Li substitutions

Abstract

Due to the high cost and insufficient resources of lithium, alternative sodium-ion batteries have been widely investigated for large-scale applications. NaFePO4 has the highest theoretical capacity of 154 mA h g−1 among the iron-based phosphates, which makes it an attractive cathode material for Na-ion batteries. Experimentally, LiFePO4 has been highly successful as a cathode material in Li-ion batteries because its olivine crystal structure provides a stable framework during battery cycling. In NaFePO4, maricite replaces olivine as the most stable phase. However, the maricite phase is experimentally found to be electrochemically inactive under normal battery operating voltages (0–4.5 V). We found that partial substitutions of Na with Li stabilize the olivine structure and may be a way to improve the performance of NaFePO4 cathodes. Using the previously developed structural LiFePO4 database, we examined the low-energy crystal structures in the system when we replace Li with Na. The known maricite and olivine NaFePO4 phases are reconfirmed and an unreported phase with energy between them is identified by our calculations. Besides, the Li-doped olivine type compound LixNa1−xFePO4 with mixed alkali ions retains better energetic stability compared with the other two types of structures of the same composition, as long as the proportion of Li exceeds 0.25. The thermodynamic stability of o-type LixNa1−xFePO4 can be further improved at finite temperatures. The primary limitation of the calculations is that we mainly focus on the zero-temperature condition; however, the relative stability of the structures may vary depending on the ambient temperature.

Graphical abstract: Stabilizing the crystal structures of NaFePO4 with Li substitutions

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2020
Accepted
03 Jun 2020
First published
03 Jun 2020

Phys. Chem. Chem. Phys., 2020,22, 13975-13980

Author version available

Stabilizing the crystal structures of NaFePO4 with Li substitutions

R. Wang, S. Wu, F. Zhang, X. Zhao, Z. Lin, C. Wang and K. Ho, Phys. Chem. Chem. Phys., 2020, 22, 13975 DOI: 10.1039/D0CP01056A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements