The relative position of π–π interacting rings notably changes the nature of the substituent effect†
Abstract
The substituent effect in monosubstituted benzene dimers mostly follows changes on electrostatics mainly controlled by the direct interaction of the substituent and the other phenyl ring, whereas the contribution from the interacting rings is smaller. As the substituent is located further away the two contributions become of similar magnitude, so the global result is a combination of both effects. These trends are confirmed in larger systems containing a contact between phenyl rings; at closer distances the interaction of the substituent and the other ring clearly dominates over changes associated with the substituted ring, but as the substituent is located further away its contribution decreases and the contribution from the ring becomes more relevant. Care should be taken in larger systems because the observed energy change can also be affected by interactions with other regions of the molecule not directly involved in the π–π interaction.