Adsorption energy scaling relation on bimetallic magnetic surfaces: role of surface magnetic moments†
Abstract
The scaling relationships between the adsorption energies of different reaction intermediates have a tremendous effect in the field of surface science, particularly in predicting new catalytic materials. In the last few decades, these scaling laws have been extensively studied and interpreted by a number of research groups which makes them almost universally accepted. In this work, we report the breakdown of the standard scaling law in magnetic bimetallic transition metal (TM) surfaces for hydrogenated species of oxygen (O), carbon (C), and nitrogen (N), where the adsorption energies are estimated using density functional theory (DFT). We propose that the scaling relationships do not necessarily rely solely on the adsorbates, they can also be strongly dependent on the surface properties. For magnetic bimetallic TM surfaces, the magnetic moment plays a vital role in the estimation of adsorption energy, and therefore towards the linear scaling relation.