Porphyrin nanoribbon-based spin filtering devices†
Abstract
Advancement in molecular electronics opens up another new domain with a new possibility of realizing its spin-polarized version, which is called molecular spintronics. This novel domain has a range of applications such as high-capacity storage devices and quantum computers. Several contemporary researchers have considered porphyrin molecules and their derivatives as potential candidates for molecular devices. Herein, using the first-principles calculations, we propose a porphyrin nanoribbon-based system for spin-filtering applications. Such a system shows robust half-metallicity and also exhibits itinerant magnetism. Our calculated spin transport properties exhibit that our device can give 100% spin-polarizing efficiency, which is very promising for next-generation spin-filtering applications.