When classical trajectories get to quantum accuracy: II. The scattering of rotationally excited H2 on Pd(111)
Abstract
The classical trajectory method in a quantum spirit assigns statistical weights to classical paths on the basis of two semiclassical corrections: Gaussian binning and the adiabaticity correction. This approach was recently applied to the heterogeneous gas–surface reaction between H2 in its internal ground state and Pd(111) surface e.g. [A. Rodríguez-Fernández et al., J. Phys. Chem. Lett., 2019, 10, 7629]. Its predictions of the sticking and state-resolved reflection probabilities were found to be in surprisingly good agreement with those of exact quantum time-dependent calculations where standard quasi-classical trajectory calculations failed. We show in this work that the quality of the previous calculations is maintained or even improved when H2 is rotationally excited.