Issue 37, 2020

Theoretical study of metal/silica interfaces: Ti, Fe, Cr and Ni on β-cristobalite

Abstract

The understanding of interfacial effects and adhesion at oxide-metal contacts is of key importance in modern technology. Metal-silica interfaces specifically are relevant in electronics, catalysis and nanotechnology. However, adhesion at these interfaces is hindered by a formation of siloxane rings on the silica surface which saturate the dangling bonds at stoichiometric terminations. In this context, we report a thorough density functional theory study of the interaction between β-cristobalite and selected 3d transition metals under different oxygen conditions. For any given interface stoichiometry, we find a progressive decrease of the metal/silica interaction along the series, following the increase of metal electronegativity. Crucially, in presence of early transition metals (Ti or Cr) the surface siloxane rings are spontaneously broken, allowing for strong adhesion. Late transition metals interact only weakly with reconstructed surfaces, similarly to what was found for zinc. In absence of reconstruction, stoichiometric silica/metal contacts behave similarly to alumina/metal contacts, but display larger interactions across the interface. Based on these results, we show that early transition metal or stainless steel buffers can significantly improve the weak adhesion between silica and zinc, responsible for a poor performance of anti-corrosive galvanic zinc coatings on modern advanced high strength steels.

Graphical abstract: Theoretical study of metal/silica interfaces: Ti, Fe, Cr and Ni on β-cristobalite

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2020
Accepted
07 Sep 2020
First published
10 Sep 2020

Phys. Chem. Chem. Phys., 2020,22, 21453-21462

Theoretical study of metal/silica interfaces: Ti, Fe, Cr and Ni on β-cristobalite

J. Baima, H. T. Le, J. Goniakowski, C. Noguera, A. Koltsov and J. Mataigne, Phys. Chem. Chem. Phys., 2020, 22, 21453 DOI: 10.1039/D0CP03216F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements