Computational design of Janus polymersomes with controllable fission from double emulsions†
Abstract
Janus polymer vesicles (polymersomes) with biphasic membranes have special properties and potential applications in many fields. The big barrier for the preparation of Janus polymersomes lies in the difficulty of complete lateral microphase separation of polymers along the vesicle membrane due to the limited mobility. Herein, we present a systematic simulation study to provide a new strategy for the fabrication of Janus polymersomes based on water-in-oil-in-water double emulsions. Two incompatible block copolymers of AB and AC completely separate into two hemispheres of the polymersome driven by the dewetting of double emulsions, followed by the stabilization of the Janus structure with the block copolymers BC at the interface between AB and AC hemispheres. The simulation results demonstrate the formation of Janus polymersomes in a wide range of the incompatibility between blocks B and C. In addition, the morphologies of the Janus polymersomes can be readily regulated by changing the number of copolymers BC, the ratio of AB to AC, and the dewetting rate of organic solvents. Both the Janus and patchy polymersomes can be obtained through the adjustment of the dewetting rate. Besides, by introducing stimulus-cleavable copolymers of BC, the Janus polymersomes can perform controllable fission. Further comparison with similar experiments has also demonstrated the feasibility of our strategy. We believe the present work will be useful for the fabrication of polymersomes with controlled patches in a large quantity, and the stimulus-responsive fission process will also make the polymersomes promising in some applications like controlled drug delivery and cytomimetic membrane communication.
- This article is part of the themed collection: 2020 PCCP HOT Articles