Issue 45, 2020

Electric polarization related Dirac half-metallicity in Mn-trihalide Janus monolayers

Abstract

A two-dimensional Dirac half-metal system, in which the 100% spin polarization and massless Dirac fermions can coexist, will show more advantages on the efficient spin injection and high spin mobility in spintronic devices. Moreover, it is attractive to achieve out-of-plane electric polarization in addition to the Dirac half-metal behavior, because this will open a new horizon in the field of multifunctional devices. In this work, a systematic study is made of Janus monolayers of Mn2X3Y3 (X, Y = Cl, Br and I, X ≠ Y) with asymmetric out-of-plane structural configurations, based on first-principles calculations. We demonstrate that monolayer Mn2X3Y3 freestanding films will remain stable experimentally by using the stability analysis. All the Janus monolayers show a ferromagnetic ground state and maintain their original DHM behavior. However, due to the large electric polarization, the hybridization intensities of Mn and the halogen atoms on both sides of Mn2Cl3I3 are very different, resulting in an obvious distortion of the spin-polarized Dirac cone. The distorted Dirac cone is repaired by the compression, indicating that strain can improve the orbital distortion induced by the electric polarization. All Mn2X3Y3 monolayer have in-plane magnetization anisotropy, which is mainly contributed by heavy halogen elements (Br and I), and the polarized substitution and biaxial strain will not change the easy magnetization orientation of the system. Thus, the electrically polarized Dirac half-metal system has potential for application in multifunctional spintronic devices.

Graphical abstract: Electric polarization related Dirac half-metallicity in Mn-trihalide Janus monolayers

Supplementary files

Article information

Article type
Paper
Submitted
23 Sep 2020
Accepted
02 Nov 2020
First published
02 Nov 2020

Phys. Chem. Chem. Phys., 2020,22, 26468-26477

Electric polarization related Dirac half-metallicity in Mn-trihalide Janus monolayers

Z. Li, J. Zhang and B. Zhou, Phys. Chem. Chem. Phys., 2020, 22, 26468 DOI: 10.1039/D0CP05028H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements