Issue 21, 2020

H-Bonded and metal(ii)–organic architectures assembled from an unexplored aromatic tricarboxylic acid: structural variety and functional properties

Abstract

This study reports the application of an aromatic tricarboxylic acid, 2,5-di(4-carboxylphenyl)nicotinic acid (H3dcna) as a versatile and unexplored organic building block for assembling a new series of metal(II) (M = Co, Ni, Zn, Fe, and Mn) complexes and coordination polymers, namely [M(Hdcna)(phen)2(H2O)]·H2O (M = Co (1), Ni (2)), [Zn(μ-Hdcna)(phen)]n (3), [Co(μ-Hdcna)(bipy)(H2O)2]n·nH2O (4), [Zn2(μ-Hdcna)2(bipy)2(H2O)4]·6H2O (5), [Zn(μ3-Hdcna)(H2biim)]n (6), [Ni2(Hdcna)2(μ-bpb)(bpb)2(H2O)4] (7), [Fe(μ4-Hdcna)(μ-H2O)]n·nH2O (8), and [Mn35-dcna)2(bipy)2(H2O)2]n·2nH2O (9). Such a diversity of products was hydrothermally prepared from the corresponding metal(II) salts, H3dcna as a principal multifunctional ligand, and N-donor mediators of crystallization (1,10-phenanthroline, phen; 2,2′-bipyridine, bipy; 2,2′-biimidazole, H2biim; or 1,4-bis(pyrid-4-yl)benzene, bpb). The obtained products 1–9 were fully characterized by standard methods (elemental analysis, FTIR, TGA, PXRD) and the structures were established by single-crystal X-ray diffraction. These vary from the discrete monomers (1, 2) and dimers (5, 7) to the 1D (3, 4, 6) and 2D (8, 9) coordination polymers (CPs). Structural and topological characteristics of hydrogen-bonded or metal–organic architectures in 1–9 were highlighted, revealing that their structural multiplicity depends on the type of metal(II) source and crystallization mediator. Thermal stability as well as luminescent, magnetic, or catalytic properties were explored for selected compounds. In particular, the zinc(II) derivatives 3, 5, and 6 were applied as efficient heterogeneous catalysts for the cyanosilylation of aldehydes with trimethylsilyl cyanide at room temperature. The catalytic reactions were optimized by tuning the different reaction parameters (solvent composition, time, catalyst loading) and the substrate scope was also explored. Compound 5 revealed superior catalytic activity leading to up to 75% product yields, while maintaining its original performance upon recycling for at least four reaction cycles. Finally, the obtained herein products represent the unique examples of coordination compounds derived from H3dcna, thus opening up the use of this multifunctional tricarboxylic acid for generating complexes and coordination polymers with interesting structures and functional properties.

Graphical abstract: H-Bonded and metal(ii)–organic architectures assembled from an unexplored aromatic tricarboxylic acid: structural variety and functional properties

Supplementary files

Article information

Article type
Paper
Submitted
05 Apr 2020
Accepted
08 May 2020
First published
11 May 2020

Dalton Trans., 2020,49, 7197-7209

H-Bonded and metal(II)–organic architectures assembled from an unexplored aromatic tricarboxylic acid: structural variety and functional properties

J. Gu, S. Wan, M. V. Kirillova and A. M. Kirillov, Dalton Trans., 2020, 49, 7197 DOI: 10.1039/D0DT01261K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements