Distorted copper(ii) radicals with sterically hindered salens: electronic structure and aerobic oxidation of alcohols†
Abstract
The sterically hindered salen ligands featuring biphenyl and tetramethyl putrescine linkers were synthesized and chelated to copper. The resulting complexes CuLbp,tBu, CuLbp,OMe, CuLpu,tBu and CuLpu,OMe were structurally characterized, showing a significanty tetrahedrally distorted metal center. The complexes show two reversible oxidation waves in the range 0.2 to 0.8 V vs. Fc+/Fc. A further reduction wave is detected in the range −1.4 to −1.7 V vs. Fc+/Fc. It is reversible for CuLbp,tBu and CuLbp,OMe and assigned to the CuII/CuI redox couple. One-electron oxidation of CuLbp,OMe, CuLpu,tBu and CuLpu,OMe was performed chemically and electrochemically. It is accompanied by a quenching of the EPR resonances. Phenoxyl radical formation was established by X-Ray diffraction on the cations [CuLbp,OMe]+ and [CuLpu,OMe]+, whereby the coordination sphere is elongated upon oxidation with quinoidal distributions of bond distances. The cations exhibit a NIR band of moderate intensity in their optical spectrum, supporting their classification as class II mixed-valent radical species according to the Robin Day classification. The proposed electronic structures are supported by DFT calculations. The cations [CuLbp,OMe]+, [CuLpu,tBu]+ and [CuLpu,OMe]+ were active towards aerobic oxidation of the unactivated alcohol 2-phenylethanol, with TON numbers up to 58 within 3 h.