Issue 43, 2020

Facile solution synthesis of Bi3+/Yb3+ ions co-doped Cs2Na0.6Ag0.4InCl6 double perovskites with near-infrared emission

Abstract

Double perovskites have attracted wide attention due to their low toxicity and good thermal stability. Doping with active elements is a promising method to endow perovskites with excellent optical, electrical or magnetic properties. Herein, a facile aqueous solution method is developed to synthesize Bi3+–Yb3+ co-doped Cs2Na0.6Ag0.4InCl6 double perovskite. Besides the intrinsic warm white self-trapped exciton (STE) emission that originated from the Cs2Na0.6Ag0.4InCl6 host, the samples also exhibit a strong near-infrared emission assigned to the 2F5/22F7/2 transition of octahedral coordinated Yb3+ ions upon excitation with ultraviolet light. The optimized sample shows a markedly high photoluminescence quantum yield of 84.7%. The photophysical studies such as photoluminescence (PL) and photoluminescence excitation spectra, temperature-dependent PL spectra, and PL decay curves reveal that the strong Yb3+ emission is attributed to the energy transfer from STEs to the Yb3+ ions. Finally, the lead-free double perovskite phosphor-converted LED containing visible and NIR regions was fabricated, with 8.92 mW output power at 100 mA drive current. The results show the great potential of the as-prepared crystals in optoelectronics applications.

Graphical abstract: Facile solution synthesis of Bi3+/Yb3+ ions co-doped Cs2Na0.6Ag0.4InCl6 double perovskites with near-infrared emission

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2020
Accepted
24 Sep 2020
First published
24 Sep 2020

Dalton Trans., 2020,49, 15231-15237

Facile solution synthesis of Bi3+/Yb3+ ions co-doped Cs2Na0.6Ag0.4InCl6 double perovskites with near-infrared emission

G. Zhang, Y. Wei, P. Dang, H. Xiao, D. Liu, X. Li, Z. Cheng and J. Lin, Dalton Trans., 2020, 49, 15231 DOI: 10.1039/D0DT03102J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements