Issue 5, 2020

Ta3N5-Nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection

Abstract

Efficient conversion of solar energy to hydrogen through photoelectrochemical (PEC) water splitting is a strategic and promising goal towards clean, green and sustainable fuel production. The most important task in PEC water splitting is the development of an efficient and stable photoanode with effective solar light absorption, generation and separation of free charge carriers, and charge carrier transport to the surface for the oxygen evolution reaction; however, such requirements are challenging to achieve simultaneously. Here we show that this problem can be solved in polycrystalline Ta3N5-nanorods (Ta3N5-NRs) that consist of aggregated single crystalline domains. The fabricated highly-conductive photoanode with large grain domains provides enhanced light harvesting because of the efficient generation and extraction of charge carriers, which leads to a completely saturated photocurrent of 9.95 mA cm−2 at 1.05 V (versus RHE) and delivers a solar energy conversion efficiency of 2.72% for single-photon photoanodes.

Graphical abstract: Ta3N5-Nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2020
Accepted
03 Apr 2020
First published
04 Apr 2020

Energy Environ. Sci., 2020,13, 1519-1530

Ta3N5-Nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection

Y. Pihosh, T. Minegishi, V. Nandal, T. Higashi, M. Katayama, T. Yamada, Y. Sasaki, K. Seki, Y. Suzuki, M. Nakabayashi, M. Sugiyama and K. Domen, Energy Environ. Sci., 2020, 13, 1519 DOI: 10.1039/D0EE00220H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements