Issue 7, 2020

Concurrent improvement in JSC and VOC in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level

Abstract

Ternary organic solar cells (OSCs) have demonstrated great potential in promoting the power conversion efficiency (PCE) of single-junction OSCs. Generally, the introduction of a third component with redshifted absorption spectra can broaden the absorption spectra and thereby potentially enhances short-circuit current density (JSC), but reduces open circuit voltage (VOC). Herein, a small-molecule acceptor (SMA) named N7IT with a high LUMO energy level and a redshifted absorption spectrum, is employed as the third component in the PM6:IT-4F-based binary host. Unlike previous results, the introduction of N71T enhances both the VOC and the JSC relative to the PM6:IT-4F host binary system. The champion ternary device (PM6 : IT-4F : N7IT = 1 : 0.7 : 0.3) demonstrates an outstanding PCE of 15.02%, significantly higher than its binary counterparts. This strategy is further validated in PM6:Y6 blends, where the addition of SY3 featuring near-infrared absorption and high LUMO effectively boosts the PCE from 16.49% to 17.07%. Our result proves the effectiveness of an appropriate third component and demonstrates the potential of red-absorbing, high-LUMO SMAs in further promoting the efficiency of single-junction binary OSCs.

Graphical abstract: Concurrent improvement in JSC and VOC in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2020
Accepted
20 May 2020
First published
21 May 2020

Energy Environ. Sci., 2020,13, 2115-2123

Concurrent improvement in JSC and VOC in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level

T. Liu, R. Ma, Z. Luo, Y. Guo, G. Zhang, Y. Xiao, T. Yang, Y. Chen, G. Li, Y. Yi, X. Lu, H. Yan and B. Tang, Energy Environ. Sci., 2020, 13, 2115 DOI: 10.1039/D0EE00662A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements