Issue 11, 2020

Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction

Abstract

Efficient generation of H2via water-splitting is an underpinning technology for realizing the hydrogen economy. However, the sluggish anodic oxygen evolution reaction (OER) requires a large energy input. Low-cost, transition metals such as NiFe oxides/hydroxides have been regarded as one of the most efficient catalysts for the OER in alkaline media, although the detailed mechanisms remain debated due to the lack of direct evidence for the proposed active sites during the catalytic processes. Herein, we show a NiFe (oxy)hydroxide catalyst doped with a third metal Cr prepared by facile electrodeposition to achieve further enhanced activity for the OER. Operando Raman and X-ray absorption spectroscopy (XAS) characterisation were employed to detect the formation of active intermediates and M–O bonds on active sites during the OER process. For the host NiFe (oxy)hydroxide catalyst, the shorter Fe–O in the Fe-substituted-β-NiOOH intermediate is observed as active sites for the OER. A Cr, Fe-substituted-β-NiOOH intermediate is detected in the enhanced NiFeCr (oxy)hydroxide catalyst where Cr is oxidized into the 6+ valence state with optimal Cr–O bonds, adding new active sites to boost the OER. Density functional theory (DFT) calculations support the operando spectroscopic observations and reveal the lower overpotential at the Cr6+ sites in the NiFeCr oxyhydroxide intermediate than the Fe3+ sites in the NiFe oxyhydroxide intermediate. This study demonstrates a strategy for designing highly active OER catalysts by introducing high valence metals into oxides/hydroxides to further enhance the kinetics of water oxidation.

Graphical abstract: Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2020
Accepted
09 Sep 2020
First published
09 Sep 2020

Energy Environ. Sci., 2020,13, 4225-4237

Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction

X. Bo, R. K. Hocking, S. Zhou, Y. Li, X. Chen, J. Zhuang, Y. Du and C. Zhao, Energy Environ. Sci., 2020, 13, 4225 DOI: 10.1039/D0EE01609H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements