Issue 10, 2020

Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting

Abstract

Photoelectrochemical (PEC) solar-fuel conversion is a promising approach to converting energy from sunlight into storable chemical fuels. The development of low cost, highly efficient, and stable semiconductor-based photoelectrodes is a key step in realizing economically viable PEC energy conversion on a global scale. The p-type Cu-based metal oxides possess a wide range of bandgap values and favorable band edges relative to the water splitting redox couples, thus providing promising candidates for PEC solar conversion applications. However, the improvement of the PEC performance for the binary and ternary copper-based metal oxides is severely hindered by the chemical instability and/or unsatisfactory optoelectronic properties. Thus, a fundamental understanding of the key limitations, improvement strategies, and progress of these materials is critical to design high performance and stable photocathodes. Here, we outline the development of p-type binary and ternary Cu-based metal oxide photocathodes, discuss the merits and major challenges of these p-type materials, and present the latest research effort in modifying the materials towards high-performance photocathodes. The critical strategies that have been successfully employed for Cu2O-based solar cells and photocathodes are emphasized to offer guidelines to advance emerging Cu-based photocathodes. Emphasis is placed on the determination of the faradaic efficiency and onset potential of hydrogen generation for the modified photocathodes to properly evaluate the performance and design tandem devices that achieve bias-free solar water splitting. Furthermore, perspectives regarding emerging issues yet to be addressed for the development of Cu-based metal oxide photocathodes with high photocurrent and photovoltage are also presented.

Graphical abstract: Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting

Supplementary files

Article information

Article type
Review Article
Submitted
28 Jul 2020
Accepted
09 Sep 2020
First published
10 Sep 2020

Energy Environ. Sci., 2020,13, 3269-3306

Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting

C. Li, J. He, Y. Xiao, Y. Li and J. Delaunay, Energy Environ. Sci., 2020, 13, 3269 DOI: 10.1039/D0EE02397C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements