Issue 12, 2020

Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials

Abstract

The practical application of eco-friendly tin telluride (SnTe) at intermediate temperatures has been long restricted by its lower average ZT than that of state-of-art PbTe. Here, a maximal figure of merit ZTmax ∼ 1.4 at 773 K and an ultrahigh ZTave ∼ 0.83 (between 323 and 773 K) are realized in SnTe by alloying with Sb2Te3 and follow-up rhenium doping. Microstructural characterizations reveal that Sb2Te3 alloying produces van der Waals gap-like structure throughout the SnTe matrix, leading to a significant reduction of lattice thermal conductivity; rhenium doping can tune the carrier concentration precisely at high temperatures, thus further improving the power factor. The construction of gap-like structure in our Sb2Te3(SnTe)n samples and its remarkable effect on thermoelectric transports can shed light for future studies of SnTe and analogous thermoelectric systems.

Graphical abstract: Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2020
Accepted
03 Nov 2020
First published
03 Nov 2020

Energy Environ. Sci., 2020,13, 5135-5142

Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials

X. Xu, J. Cui, Y. Yu, B. Zhu, Y. Huang, L. Xie, D. Wu and J. He, Energy Environ. Sci., 2020, 13, 5135 DOI: 10.1039/D0EE02638G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements