N,S co-doped hierarchically porous carbon materials for efficient metal-free catalysis†
Abstract
Metal-free carbon catalysts with excellent catalytic performance have drawn much research attention recently. Herein, polymer-derived N,S co-doped carbon catalysts (PDNSC-X) with a hierarchically porous structure were facilely prepared by a cost-effective and convenient strategy via carbonization of a N- and S atom-containing polymer precursor and were subsequently used as efficient metal-free catalysts. The catalytic activity of the as-fabricated PDNSC-800 was greater than those of other reported heteroatom-doped carbon catalysts in catalytic reduction of various nitroarenes. The high catalytic activity of PDNSC-800 was related to the synergistic effects of a high surface area, a hierarchically porous structure, abundant N- and S-containing active sites, and defect formation. In addition, the close relationship between the N species (especially pyrrolic N) and high selectivity in metal-free catalytic synthesis was investigated in the reduction of nitroarenes and selective oxidation of ethylbenzene. This study may provide a new strategy to fabricate specific heteroatom-doped metal-free carbon catalysts for environmentally friendly efficient organic transformation.