Issue 17, 2020

Dihydrolevoglucosenone (Cyrene™) as a bio-renewable solvent for Cu(0)wire-mediated reversible deactivation radical polymerization (RDRP) without external deoxygenation

Abstract

Biorenewable dihydrolevoglucosenone (Cyrene™) is used as an effective dipolar aprotic solvent for Cu(0) wire-mediated RDRP of various monomers without external deoxygenation being applied. The solvent is used to give products with a broad range of molar masses (Mn ∼ 700–28 000), in situ chain extension and as low as 7.8 × 10−4 eq. of [Cu(II)Br2] relative to initiator.

Graphical abstract: Dihydrolevoglucosenone (Cyrene™) as a bio-renewable solvent for Cu(0)wire-mediated reversible deactivation radical polymerization (RDRP) without external deoxygenation

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2020
Accepted
16 Aug 2020
First published
17 Aug 2020
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2020,22, 5833-5837

Dihydrolevoglucosenone (Cyrene™) as a bio-renewable solvent for Cu(0)wire-mediated reversible deactivation radical polymerization (RDRP) without external deoxygenation

A. Marathianos, E. Liarou, E. Hancox, J. L. Grace, D. W. Lester and D. M. Haddleton, Green Chem., 2020, 22, 5833 DOI: 10.1039/D0GC02184A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements