Issue 9, 2020

A critical review of single particle inductively coupled plasma mass spectrometry – A step towards an ideal method for nanomaterial characterization

Abstract

Single particle inductively coupled plasma mass spectrometry (spICP-MS or SP-ICP-MS depending on the author) is becoming an important tool for the characterization of nanoparticles (NPs). The method allows determining the size, size distribution, and particle number concentrations of NPs in suspensions after a mere few minutes of measurement. This review is modeled after the concept of “an ideal method for atomic spectroscopy” introduced by Gary M. Hieftje in his publication dedicated to Howard Malmstadt. This review discusses the instrumental developments in spICP-MS of recent years step-by-step, from the sample introduction system to the detector. The authors identify necessary improvements and suggest directions for further developments which have the potential to bring the method closer to “an ideal method for atomic spectroscopy”. The review also discusses the literature on coupling spICP-MS to separation and fractionation techniques including capillary electrophoresis (CE), field flow fractionation (FFF), and differential mobility analysis (DMA). The second part of the review is dedicated to the applications of spICP-MS. Key steps in sample preparation and selected instrumental conditions that were used in the published literature are summarized in a tabular form. Most frequently, spICP-MS is used for silver (Ag), gold (Au), and titanium dioxide (TiO2) nanomaterial analysis. Data acquisition was typically performed with millisecond dwell times in the past while a time resolution of hundreds of microseconds has been used more often in the last five years. The table may serve as a guide to choose an experimental procedure depending on the matrix that is present in the sample under investigation.

Graphical abstract: A critical review of single particle inductively coupled plasma mass spectrometry – A step towards an ideal method for nanomaterial characterization

Article information

Article type
Critical Review
Submitted
17 Jun 2019
Accepted
25 Jul 2019
First published
25 Jul 2019
This article is Open Access
Creative Commons BY-NC license

J. Anal. At. Spectrom., 2020,35, 1740-1783

A critical review of single particle inductively coupled plasma mass spectrometry – A step towards an ideal method for nanomaterial characterization

D. Mozhayeva and C. Engelhard, J. Anal. At. Spectrom., 2020, 35, 1740 DOI: 10.1039/C9JA00206E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements