Issue 10, 2020

Capabilities of automated LA-ICP-TOFMS imaging of geological samples

Abstract

Element imaging aims to provide quantitative data on multi-element distributions from major to trace elements with high lateral resolution. Here, we describe a control system for laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) imaging with complex integration of translational stage, laser, and mass spectrometer data acquisition which was tested on glass and mineral samples. In particular, besides single pulse imaging at a laser repetition rate of 100 Hz using a 5 μm laser spot size, a hole drilling imaging approach provided higher pixel sensitivity and lower limits of detection (<1 mg kg−1 for most heavy elements) while maintaining the same lateral resolution. An optional surface cleaning pulse can be applied without additional recording of data. Furthermore, the ablation area can be adapted to specific object structures of interest and leads to significant shorter imaging times. Triggering the data acquisition for every ablation position led to binned pixel data in relation to the sample position. This simplifies the data evaluation and allows a more automated image generation. The approach presented in this study enables flexible adjustments of distinct ablation modes to a specific analytical task and provides the basis for fully automated element imaging. To test the applicability of our approach, two complex geological samples containing crystalline solids were imaged to gain insights into the distribution of trace elements that occur typically in the low mg kg−1 range. We show that both single pulse and hole drilling ablation modes allow the determination of a large number of trace elements. However, the hole drilling mode shows a superior sensitivity per pixel, which in turn provides more detailed information about the formation of geological samples.

Graphical abstract: Capabilities of automated LA-ICP-TOFMS imaging of geological samples

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2020
Accepted
23 Jul 2020
First published
23 Jul 2020
This article is Open Access
Creative Commons BY-NC license

J. Anal. At. Spectrom., 2020,35, 2255-2266

Capabilities of automated LA-ICP-TOFMS imaging of geological samples

C. Neff, P. Keresztes Schmidt, P. S. Garofalo, G. Schwarz and D. Günther, J. Anal. At. Spectrom., 2020, 35, 2255 DOI: 10.1039/D0JA00238K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements