Issue 8, 2020

Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices

Abstract

Microvalving is a pivotal component in many microfluidic lab-on-a-chip platforms and micro-total analysis systems (μTAS). Effective valving is essential for the integration of multiple unit operations, such as, liquid transport, mixing, aliquoting, metering, washing, and fractionation. The ideal microfluidic system integrates numerous, sequential unit operations, provides precise spaciotemporal reagent release and flow control, and is amenable to rapid, low-cost fabrication and prototyping. Centrifugal microfluidics is an attractive approach that minimizes the need for supporting peripheral hardware. However, many of the microfluidic valving methods described in the literature suffer from operational limitations and fail when high rotational frequencies or pressure heads are required early in the analytical process. Current approaches to valve closure add unnecessary complexity to the microfluidic architecture, require the incorporation of additional materials such as wax, and entail extra fabrication steps or processes. Herein we report the characterization and optimization of a laser-actuated, closable valve method for polymeric microfluidic devices that ameliorates these shortcomings. Under typical operational conditions (rcf ≤605 × g) a success rate >99% was observed, i.e. successful valve closures remained leak free through 605 × g. Implementation of the laser-actuated closable valving system is demonstrated on an automated, centrifugally driven dynamic solid phase extraction (dSPE) device. Compatibility of this laser-actuated valve closure approach with commercially available polymerase chain reaction (PCR) assays is established by the generation of full 18-plex STR profiles from DNA purified via on-disc dSPE. This novel approach promises to simplify microscale valving, improve functionality by increasing the number of integrated unit operations, and allow for the automation of progressively complex biochemical assays.

Graphical abstract: Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2019
Accepted
01 Mar 2020
First published
06 Mar 2020

Lab Chip, 2020,20, 1426-1440

Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices

M. S. Woolf, L. M. Dignan, H. M. Lewis, C. J. Tomley, A. Q. Nauman and J. P. Landers, Lab Chip, 2020, 20, 1426 DOI: 10.1039/C9LC01187K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements