Issue 10, 2020

In situ generation of plasma-activated aerosols via surface acoustic wave nebulization for portable spray-based surface bacterial inactivation

Abstract

The presence of reactive species in plasma-activated water is known to induce oxidative stresses in bacterial species, which can result in their inactivation. By integrating a microfludic chipscale nebulizer driven by surface acoustic waves (SAWs) with a low-temperature atmospheric plasma source, we demonstrate an efficient technique for in situ production and application of plasma-activated aerosols for surface disinfection. Unlike bulk conventional systems wherein the water is separately batch-treated within a container, we show in this work the first demonstration of continuous plasma-treatment of water as it is transported through a paper strip from a reservoir onto the chipscale SAW device. The significantly larger surface area to volume ratio of the water within the paper strip leads to a significant reduction in the duration of the plasma-treatment, while maintaining the concentration of the reactive species. The subsequent nebulization of the plasma-activated water by the SAW then allows the generation of plasma-activated aerosols, which can be directly sprayed onto the contaminated surface, therefore eliminating the storage of the plasma-activated water and hence circumventing the typical limitation in conventional systems wherein the concentration of the reactive species diminishes over time during storage, resulting in a reduction in the efficacy of bacterial inactivation. In particular, we show up to 96% reduction in Escherichia coli colonies through direct spraying with the plasma-activated aerosols. This novel, low-cost, portable and energy-efficient hybrid system necessitates only minimal maintenance as it only requires the supply of tap water and battery power for operation, and is thus suitable for decontamination in home environments.

Graphical abstract: In situ generation of plasma-activated aerosols via surface acoustic wave nebulization for portable spray-based surface bacterial inactivation

Supplementary files

Article information

Article type
Paper
Submitted
01 Jan 2020
Accepted
21 Apr 2020
First published
21 Apr 2020

Lab Chip, 2020,20, 1856-1868

In situ generation of plasma-activated aerosols via surface acoustic wave nebulization for portable spray-based surface bacterial inactivation

K. S. Wong, W. T. H. Lim, C. W. Ooi, L. Y. Yeo and M. K. Tan, Lab Chip, 2020, 20, 1856 DOI: 10.1039/D0LC00001A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements