Issue 15, 2020

An in vivo microfluidic study of bacterial transit in C. elegans nematodes

Abstract

Caenorhabditis elegans (C. elegans) constitutes an important model organism for use in nutrition and aging studies. We report a novel method for studying the dynamics of Escherichia coli (E. coli) bacterial transit through the worms' intestine. A microfluidic chip was designed for alternating C. elegans on-chip culture and immobilization, thereby enabling periodic high-resolution time-lapse imaging at single-worm resolution over several days. Immobilization was achieved in a reversible way using arrays of tapered channels suitable for assay parallelization. Dedicated C. elegans feeding protocols were applied. Two E. coli bacterial strains, HT115 and OP50, respectively labeled with green fluorescent protein (GFP) and red fluorescent protein (RFP), were used as food source and imaged with fluorescence microscopy techniques to measure relevant parameters of the bacterial transit process. Feeding behavior and E. coli transit dynamics in the whole intestinal tract of the worms were characterized in an automated way over the first 3 days of adulthood, revealing both fast transit phenomena and variations in microbial accumulation. In particular, we studied the bacterial food transit periodicity in wild-type and eat-2 (ad465) mutant C. elegans strains in both trapped and free-swimming conditions. In order to further demonstrate the versatility of our microfluidic platform, we also studied drug-induced modifications of the bacterial transit by measuring the response of the worms' intestine to exposure to the neurotransmitter serotonin.

Graphical abstract: An in vivo microfluidic study of bacterial transit in C. elegans nematodes

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2020
Accepted
20 Jun 2020
First published
01 Jul 2020

Lab Chip, 2020,20, 2696-2708

An in vivo microfluidic study of bacterial transit in C. elegans nematodes

V. Viri, M. Cornaglia, H. B. Atakan, T. Lehnert and M. A. M. Gijs, Lab Chip, 2020, 20, 2696 DOI: 10.1039/D0LC00064G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements