Issue 18, 2020

NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications

Abstract

Paper has been a popular material of choice for biomedical applications including for bioanalysis and cell biology studies. Regular cellulose paper-based devices, however, have several key limitations including slow fluid flow; large sample retention in the paper matrix for microfluidic paper-based analytical device (μPAD) application; serious solvent evaporation issues, and contamination and poor control of experimental conditions for cell culture. Here, we describe the development of two novel platforms, nanopaper-based analytical devices (nanoPADs) and nanofibrillated adherent cell-culture platforms (nanoFACEs), that use nanofibrillated cellulose (NFC) paper, simply called nanopaper, as the substrate material to create transparent, pump-free and hollow-channel paper-based microfluidic devices. Due to the natural hydrophilicity and nanoscale pore size of nanopaper, the hollow-channel microfluidic devices can realize a totally pump-free flow without any complicated surface chemical functionalization on the nanopaper. Experimental results showed that within a certain range, larger hollow channel size leads to faster pump-free flows. Different from previous designs of paper-based hollow-channel microfluidic devices, the high transparency of the nanopaper substrate enabled the integration of various optical sensing and imaging technologies together with the nanoPADs and nanoFACEs. As proof-of-concept demonstrations, we demonstrated the use of nanoPADs for colorimetric sensing of glucose and surface-enhanced Raman spectroscopy (SERS)-based detection of environmental pollutants and applied the nanoFACEs to the culture of human umbilical vein endothelial cells (HUVECs). These demonstrations show the great promise of nanoPADs and nanoFACEs for biomedical applications such as chemical/bioanalysis and cell biology studies.

Graphical abstract: NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications

Supplementary files

Article information

Article type
Paper
Submitted
05 Mar 2020
Accepted
21 Jul 2020
First published
28 Jul 2020

Lab Chip, 2020,20, 3322-3333

NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications

B. Ying, S. Park, L. Chen, X. Dong, E. W. K. Young and X. Liu, Lab Chip, 2020, 20, 3322 DOI: 10.1039/D0LC00226G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements