Ultrasonic microstreaming for complex-trajectory transport and rotation of single particles and cells†
Abstract
Precisely controllable transport and rotation of microparticles and cells has great potential to enable new capabilities for single-cell level analysis. In this work, we present versatile ultrasonic microstreaming based manipulation that enables active and precise control of transport and rotation of individual microscale particles and biological cells in a microfluidic device. Two different types of ultrasonic microstreaming flow patterns can be produced by oscillating embedded microstructures in circular and rectilinear vibration modes, which have been validated by both numerical simulation and experimental observation. We have further showcased the ability to transport individual microparticles along the outlines of complex alphabet letters, demonstrating the versatility and simplicity of single-particle level manipulation with bulk vibration.