Issue 6, 2020

Nanofeatures affect the thermal transitions of polymer thin films: a microcantilever-based investigation

Abstract

Nanotechnology is regarded as a promising tool to advance science for a wide range of applications, ranging from nanomedicine, nanoelectronics, imaging and diagnosis. Whilst the unique surface properties of nanostructured materials improve their performance in comparison to conventional materials, little has been done to inspect the correlation between such nanofeatures and the thermomechanical response of nanomaterials. Herein, we report the influence of structural nanofeatures in the glass transition and cold crystallization temperatures (Tg and Tcc) of poly(lactic acid) (PLA) thin films using a technology that detects the microcantilever deflection as a function of temperature. Measurements were conducted on arrays of 8-cantilevers spin-coated with PLA films (thickness of ∼120–200 nm and weight of 6–9 ng) displaying several patterns (compact, nanopored and/or nanoperforated). The Tg increases by 8–13 °C when nanopores and nanoperforations are present, while only the latter affect the Tcc, which increases by ∼6 °C. These phenomena have been attributed (i) the stress of the PLA molecules located at the interface of the pores and perforations, and (ii) to the film-air interface effect, which is associated with the quasi-2D nature of thin films (i.e. those with an aspect ratio of size and thickness greater than 105). On the other hand, the thermomechanical response of PLA thin films loaded with curcumin (CUR) or stiripentol (STP), which formed segregated nanodomains, also differs from that displayed by unloaded PLA films. The size and abundance of CUR and STP nanodomains are directly related to the stress of the PLA chains at the interface and the free volume, which affects the interactions strength and the mobility of polymer molecules (i.e. Tg and Tcc) with respect to neat PLA. Overall, the thermal properties of thin films, which cannot be studied using conventional calorimetric methods, is modified by the presence of nanofeatures. As a consequence, their design needs to be taken into account during the manufacturing of nanomaterials.

Graphical abstract: Nanofeatures affect the thermal transitions of polymer thin films: a microcantilever-based investigation

Article information

Article type
Paper
Submitted
28 Jun 2020
Accepted
27 Aug 2020
First published
28 Aug 2020
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2020,1, 2084-2094

Nanofeatures affect the thermal transitions of polymer thin films: a microcantilever-based investigation

M. Lopes-Rodrigues, D. Martí-Balleste, C. Michaux, E. A. Perpète, J. Puiggalí, M. M. Pérez-Madrigal and C. Alemán, Mater. Adv., 2020, 1, 2084 DOI: 10.1039/D0MA00459F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements