Issue 5, 2020

Mining structure–property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks

Abstract

Data-driven methods have attracted increasingly more attention in materials research since the advent of the material genome initiative. The combination of materials science with computer science, statistics, and data-driven methods aims to expediate materials research and applications and can utilize both new and archived research data. In this paper, we present a data driven and deep learning approach that builds a portion of the structure–property relationship for polymer nanocomposites. Analysis of archived experimental data motivates development of a computational model which allows demonstration of the approach and gives flexibility to sufficiently explore a wide range of structures. Taking advantage of microstructure reconstruction methods and finite element simulations, we first explore qualitative relationships between microstructure descriptors and mechanical properties, resulting in new findings regarding the interplay of interphase, volume fraction and dispersion. Then we present a novel deep learning approach that combines convolutional neural networks with multi-task learning for building quantitative correlations between microstructures and property values. The performance of the model is compared with other state-of-the-art strategies including two-point statistics and structure descriptor-based approaches. Lastly, the interpretation of the deep learning model is investigated to show that the model is able to capture physical understandings while learning.

Graphical abstract: Mining structure–property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks

Article information

Article type
Paper
Submitted
13 Feb 2020
Accepted
01 Apr 2020
First published
01 Apr 2020

Mol. Syst. Des. Eng., 2020,5, 962-975

Author version available

Mining structure–property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks

Y. Wang, M. Zhang, A. Lin, A. Iyer, A. S. Prasad, X. Li, Y. Zhang, L. S. Schadler, W. Chen and L. C. Brinson, Mol. Syst. Des. Eng., 2020, 5, 962 DOI: 10.1039/D0ME00020E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements