Issue 1, 2020

Super-soft solvent-free bottlebrush elastomers for touch sensing

Abstract

The sensitivity of capacitive pressure sensors is primarily determined by the modulus of a soft dielectric layer that reversibly deforms to produce an electrical signal. Unfortunately, the mechanical properties of conventional linear networks are constrained such that a lower limit on softness translates to poor capacitive pressure sensor performance. Here, we overcome this paradigm by leveraging the intrinsic “super-soft” characteristic of bottlebrush polymers. A simple light-induced crosslinking strategy is introduced to facilitate device fabrication and parallel plate capacitive pressure sensors constructed with these bottlebrush polymer networks exhibit up to a 53× increase in sensitivity compared to traditional material formulations, e.g., Sylgard 184. This combination of contemporary synthetic chemistry and application-driven materials design accentuates the opportunities available at the intersection of science and engineering.

Graphical abstract: Super-soft solvent-free bottlebrush elastomers for touch sensing

Supplementary files

Article information

Article type
Communication
Submitted
21 Jun 2019
Accepted
16 Aug 2019
First published
16 Aug 2019

Mater. Horiz., 2020,7, 181-187

Author version available

Super-soft solvent-free bottlebrush elastomers for touch sensing

V. G. Reynolds, S. Mukherjee, R. Xie, A. E. Levi, A. Atassi, T. Uchiyama, H. Wang, M. L. Chabinyc and C. M. Bates, Mater. Horiz., 2020, 7, 181 DOI: 10.1039/C9MH00951E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements